INTRODUCTION

Photodiodes bridge the gap between light and electronics. Many times, precision applications (such as CT scanners, blood analyzers, smoke detectors, position sensors, IR pyrometers and chromatographs) utilize the basic transimpedance amplifier circuit that transforms light energy into a usable electrical voltage. In these circuits, photodiodes are used to capture the light energy and transform it into a small current. This current is proportional to the level of illumination from the light source. A preamplifier then converts the current (in amperes) from the photodiode sensor into a usable voltage level.

FIGURE 1: In this precision photosensing configuration, a photodiode (in the Photovoltaic mode) is used to capture the luminance energy from a light source. The effects of the variability, due to alignment problems, is reduced by using a potentiometer for the resistive element in the feedback loop of the amplifier.

This application note will show how the adjustability of the digital potentiometer can be used as an advantage in photosensing circuits. Initially, photodiode characteristics will be looked at, followed by various digital potentiometer circuits that use photodiodes in the Photoconductive and Photovoltaic modes.

Photodiode Characteristics

A photodiode can be operated in the Photovoltaic or Photoconductive mode, as shown in Figure 2.

FIGURE 2: The two modes that photodiodes can be used in are: (a) Photovoltaic and (b) Photoconductive. In the Photovoltaic mode, the photodiode is biased with zero volts which optimizes the sensor’s accuracy. In the Photoconductive mode, the diode is reverse biased in order to optimize the responses to step functions.

A photodiode configured in the Photovoltaic mode is zero biased. In this mode, the light-to-current response of the diode is maximized for light sensitivity and linearity, making it well suited for precision applications. A photodiode configured in the Photoconductive mode has a reverse voltage bias applied. In this mode, the photodiode is optimized for fast response to light sources. An ideal application for a diode configured in the Photoconductive mode is digital communication.

The key elements that influence the circuit performance of each mode are the photodiode capacitance (C_D) and the photodiode leakage current (I_L), as shown in Figure 3. These parasitic elements can effect the precision and speed of photo detection circuits.
FIGURE 3: The photodiode can be described with an ideal current source (ISC) that is a result of radiant flux energy from light, an ideal diode (DPD), a junction capacitance (C_{PD}), leakage current (I_L), a parasitic series resistor (R_S) and a shunt resistor (R_{PD}).

The junction capacitance (C_{PD}) is determined by the width of the depletion region between the p-type and n-type material of the photodiode. The depletion region width of the photodiode is inversely proportional to the diode’s reverse bias voltage. Wider depletion regions will increase the magnitude of the junction capacitance. Conversely, wider depletion regions (found with PIN photodiodes) have broader spectral responses.

Values of the junction capacitance of silicon photodiodes in the Photovoltaic mode (zero bias) range from approximately 20 pF to 25 pF, up to several thousand pico farads. Values of the junction capacitance of silicon photodiodes in the Photoconductive mode (with a reverse bias of -10V) are generally ten times lower. This reduced parasitic capacitance facilitates high-speed operation. However, the linearity and offset errors are not optimized.

A reverse bias voltage across the photodiode will cause an increase in leakage current, I_L. When the reverse bias voltage exceeds several millivolts, linearity starts to be compromised in precision circuits. With large voltages, this leakage current can be high enough to make the diode only useful in digital applications.

The shunt resistance (R_{PD}), also called “dark” resistance, is measured with zero volts across the element. At room temperature, the magnitude of this resistance typically exceeds 100 MΩ. In most circuits, this resistance is generally ignored.

The second parasitic diode resistance (R_S) is known as the series resistance of the diode. This parasitic resistance typically ranges from 10 to 1,000Ω. Due to the small size of this resistor, it only has an effect on the frequency response of the circuit well past the bandwidth of operation.

When light illuminates on the photodiode, current (I_{SC}) flows from the anode to the cathode of the device. The transfer function of light-to-photodiode current is equal to the following:

\[I_{SC} = \text{Radiant Flux Energy/Flux Responsivity} \]

where:

- \(I_{SC} \) = the current produced by the photodiode with units in amperes/cm².
- Radiant Flux Energy = the light energy with units in watts/cm².
- Flux Responsivity = the measure of the photodiode’s sensitivity with units in watts/ampere.

Photovoltaic Mode Circuits

A practical way to design a precision photosensing circuit is to place a photodiode in a Photovoltaic mode. This can be done by placing the device across the inputs of a CMOS input amplifier and a resistor in the feedback loop. The single-supply circuit implementation of this circuit is shown in Figure 4.

When light illuminates the photodiode, current (I_{SC}) flows from the anode to the cathode of the device. The transfer function of light-to-photodiode current is equal to the following:

\[I_{SC} = \frac{\text{Radiant Flux Energy}}{\text{Flux Responsivity}} \]

where:

- \(I_{SC} \) = the current produced by the photodiode with units in amperes/cm².
- Radiant Flux Energy = the light energy with units in watts/cm².
- Flux Responsivity = the measure of the photodiode’s sensitivity with units in watts/ampere.

Photovoltaic Mode Circuits

A practical way to design a precision photosensing circuit is to place a photodiode in a Photovoltaic mode. This can be done by placing the device across the inputs of a CMOS input amplifier and a resistor in the feedback loop. The single-supply circuit implementation of this circuit is shown in Figure 4.

When light illuminates the photodiode, current (I_{SC}) flows from the anode to the cathode of the device. The transfer function of light-to-photodiode current is equal to the following:

\[I_{SC} = \frac{\text{Radiant Flux Energy}}{\text{Flux Responsivity}} \]

where:

- \(I_{SC} \) = the current produced by the photodiode with units in amperes/cm².
- Radiant Flux Energy = the light energy with units in watts/cm².
- Flux Responsivity = the measure of the photodiode’s sensitivity with units in watts/ampere.

Photovoltaic Mode Circuits

A practical way to design a precision photosensing circuit is to place a photodiode in a Photovoltaic mode. This can be done by placing the device across the inputs of a CMOS input amplifier and a resistor in the feedback loop. The single-supply circuit implementation of this circuit is shown in Figure 4.

When light illuminates the photodiode, current (I_{SC}) flows from the anode to the cathode of the device. The transfer function of light-to-photodiode current is equal to the following:

\[I_{SC} = \frac{\text{Radiant Flux Energy}}{\text{Flux Responsivity}} \]

where:

- \(I_{SC} \) = the current produced by the photodiode with units in amperes/cm².
- Radiant Flux Energy = the light energy with units in watts/cm².
- Flux Responsivity = the measure of the photodiode’s sensitivity with units in watts/ampere.

Photovoltaic Mode Circuits

A practical way to design a precision photosensing circuit is to place a photodiode in a Photovoltaic mode. This can be done by placing the device across the inputs of a CMOS input amplifier and a resistor in the feedback loop. The single-supply circuit implementation of this circuit is shown in Figure 4.

When light illuminates the photodiode, current (I_{SC}) flows from the anode to the cathode of the device. The transfer function of light-to-photodiode current is equal to the following:

\[I_{SC} = \frac{\text{Radiant Flux Energy}}{\text{Flux Responsivity}} \]

where:

- \(I_{SC} \) = the current produced by the photodiode with units in amperes/cm².
- Radiant Flux Energy = the light energy with units in watts/cm².
- Flux Responsivity = the measure of the photodiode’s sensitivity with units in watts/ampere.

Photovoltaic Mode Circuits

A practical way to design a precision photosensing circuit is to place a photodiode in a Photovoltaic mode. This can be done by placing the device across the inputs of a CMOS input amplifier and a resistor in the feedback loop. The single-supply circuit implementation of this circuit is shown in Figure 4.

When light illuminates the photodiode, current (I_{SC}) flows from the anode to the cathode of the device. The transfer function of light-to-photodiode current is equal to the following:

\[I_{SC} = \frac{\text{Radiant Flux Energy}}{\text{Flux Responsivity}} \]

where:

- \(I_{SC} \) = the current produced by the photodiode with units in amperes/cm².
- Radiant Flux Energy = the light energy with units in watts/cm².
- Flux Responsivity = the measure of the photodiode’s sensitivity with units in watts/ampere.
The current-to-voltage transfer function of this circuit is:

\[V_{OUT} = I_{SC} \times R_F \]

with a single pole at \(1/(2\pi R_F (C_{RF} + C_P)) \)

where:

- \(V_{OUT} \) = the voltage at the output of the operational amplifier in volts.
- \(I_{SC} \) = the current produced by the photodiode with units in amperes.
- \(R_F \) = a digital potentiometer that is serving as the feedback resistor with units in ohms.
- \(C_{RF} \) = the parasitic capacitance of the digital potentiometer with units in farads. This parasitic capacitor can cause oscillation with some digital potentiometer settings. If this occurs, place a 100 pF to 500 pF in parallel (\(C_F \)) with the digital potentiometer, as shown in Figure 4.

The programmed value of the digital potentiometer (\(R_F \)) is equal to:

\[R_F = \frac{D_{CODE} \times R_{NOMINAL}}{2^n} \]

where:

- \(D_{CODE} \) = the programmed code to the digital potentiometer.
- \(R_{NOMINAL} \) = the nominal resistance of the digital pot from \(P_A \) to \(P_B \).
- \(n \) = the number of bits that the digital potentiometer has. In the case of Microchip digital potentiometers, the \('n' \) is equal to eight.

If the digital potentiometer is programmed to equal 50 kΩ (\(D_{CODE} = 128 \)), the maximum current from the photodiode is 75 μA and the maximum output voltage (\(V_{OUT} \)) is 3.75V. With this configuration, the digital potentiometer capacitance (\(C_{RF} \)) is 75 pF. As a result, the frequency response of the circuit is equal to \(1/2\pi R_F C_{RF} \) or 42.4 kHz.

Circuit flexibility is added with the inclusion of a digital potentiometer, as opposed to a standard resistor. By changing the value of the digital potentiometer, the maximum output voltage (\(V_{OUT} \)) can be adjusted. This kind of flexibility accommodates alignment problems between the light source and the photodiode.

Another circuit configuration that can be used for Photovoltaic mode circuits is shown in Figure 5.

In this precision light-sensing circuit, the potentiometer is to implement a T-network style feedback loop. This configuration provides higher gains while using a lower value potentiometer.

In this circuit, the digital potentiometer is configured to form a T-network. The digital potentiometer is a good fit in this circuit because of its low wiper resistance and resistor adjustability. The potentiometer’s A and B resistive elements are used in this circuit so that the gain versus the potentiometer digital code is linear.

The transfer function of this circuit is:

\[\frac{V_{OUT}}{I_{SC}} = R_{F-A} + \left(\frac{1 + R_{F-A}}{R_W} \right) R_{F-B} \]

where:

- \(R_{F-A} \) = the A portion of the digital potentiometer resistor.
- \(R_{F-B} \) = the A portion of the digital potentiometer resistor.
- \(R_W \) = the parasitic resistance through the wiper.
This formula can be further worked by using the following substitutions:

\[
\begin{align*}
R_{F-A} &= R_{F-NOM} - R_{F-B} \\
R_{F-B} &= \frac{R_{F-NOM}D_n}{2^n}
\end{align*}
\]

where:
- \(R_{F-NOM} \) is the nominal resistance across the digital potentiometer. In Figure 5, this value is equal to 10 kΩ.
- \(D_n \) is the programmed digital code of the potentiometer.
- \(n \) is the number of bits of the digital potentiometer. In Figure 5, this value is equal to eight.

Given all of the above calculations, the graph in Figure 6 shows the gain of this T-network circuit for the entire digital code range of the MCP41010. The resistive values used in this graph are:
- \(R_{F-NOM} = 10 \text{ kΩ} \) (data sheet typical)
- \(R_W = 25\Omega \) (data sheet typical)

The primary sources of error that effect the performance of this circuit are amplifier offset voltage, amplifier noise and digital potentiometer noise.

The actual offset voltage of the amplifier will produce a gain error in the lower codes. For instance, an offset voltage of 0.35 mV will produce a 4.2% error when the digital potentiometer is set to code 50. When the offset of the amplifier is 0.1 mV, the gain error of the circuit is 1% with the same digital potentiometer code.

In cases where this circuit is used for precision sensing, the noise response of the circuit should be kept as low as possible. The two factors that effect the overall noise originate from the amplifier and the resistive network. In order to achieve the lowest possible noise in this circuit \(R_{F-B} \gg R_{F-A} \). The range of digital potentiometer codes that meet this criteria is from codes 233 to 255.

Photoconductive Mode Circuits

The response of a photodiode can be configured in the Photoconductive mode, as shown in Figure 7.

![Photoconductive Mode Circuit Diagram](image)

FIGURE 7: When a photodiode is configured in the Photoconductive mode, the diode is reversed biased in order to reduce the diode parasitic capacitance.
CONCLUSION

The two modes that a photosensing circuit can be configured are: Photovoltaic and Photoconductive. Photovoltaic configurations are best suited for precision circuits, while Photoconductive configurations are best suited for higher speed, digital circuits. If real-time adjustability of photodiode current to voltage gain is an issue in these photo detection circuits, a digital potentiometer can effectively be used to achieve this goal.

This application note presents three photosensing circuits configured with a digital potentiometer for real-time adjustments that can be used to calibrate LED/photodiode alignment variability.

REFERENCES

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLoq, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartShunt and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, IECPIC, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICtail, PowerCal, PowerInfo, PowerMATE, PowerTool, rFLAB, rPIC, Select Mode, SmartSensor, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0075
Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2250

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338

San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-6509
Fax: 905-673-6509

ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Unit 706B
Wan Tai Bei Hai Bldg., No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104

China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower No. 88 TIDJU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599

China - Fuzhou
Unit 28F, World Trade Plaza No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521

China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
233 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393

China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051, China
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060

Europe
Austria
Duriaodstrasse 2
A-4600 Wels
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

France
Parc d'Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - 1er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-63-20

Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy
Via Quasimodo, 12
20025 Legnano (MI)
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands
P. A. De Biesbosch 14
NL-5152 SC Drunen, Netherlands
Tel: 31-3-69-53-63-20
Fax: 31-3-69-30-90-79

Korea
168-1, Youngbo Bldg. 3 Floor
SAMSUNG-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 189880
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Kaohsiung Branch
30F - 1 No. 5
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803

EUROPE
Austria
Duriaodstrasse 2
A-4600 Wels
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Regus Business Centre
Lautrup høj 1-3
Balleriup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910

France
Parc d'Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - 1er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy
Via Quasimodo, 12
20025 Legnano (MI)
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands
P. A. De Biesbosch 14
NL-5152 SC Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340

United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820